

Results from the BIOCOM project in RTD pillar 3 'Seafood safety'

Jette Emborg

Department of Seafood Research (FF)

Danish Institute for Fisheries Research (DIFRES)

Outline of the presentation

- Histamine Fish Poisoning (HFP)
- Outbreaks in Denmark 2004-2005
- Morganella
- IJSEM
- Identification of Morganella
- Perspectives

Histamine Fish Poisoning (HFP)

 Ingestion of high amounts of biogenic amines (histamine) can result in HFP

HFP has clinical signs like an allergic reaction

 HFP has caused ~ 50 % of all finfish-borne cases of human disease in USA and UK

(Lehane and Olley 2000; Flick et al. 2001)

Histamine

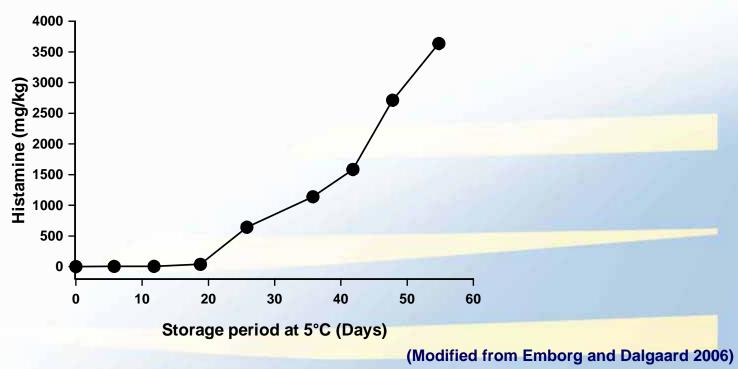
- Biogenic amine
- Potentiated by other biogenic amines?
- Produced by bacteria primarily in seafood

Bacteria responsible for HFP are very rarely identified

Seafood	Bacteria	Place and time
Fresh tuna	Morganella morganii	Japan, 1955
Fresh tuna	Hafnia sp. ?	Prague, 1967
Fresh tuna	Raoultella planticola	California, 1977
Dried sardine	Photobacterium phosphoreum	Japan, 2002

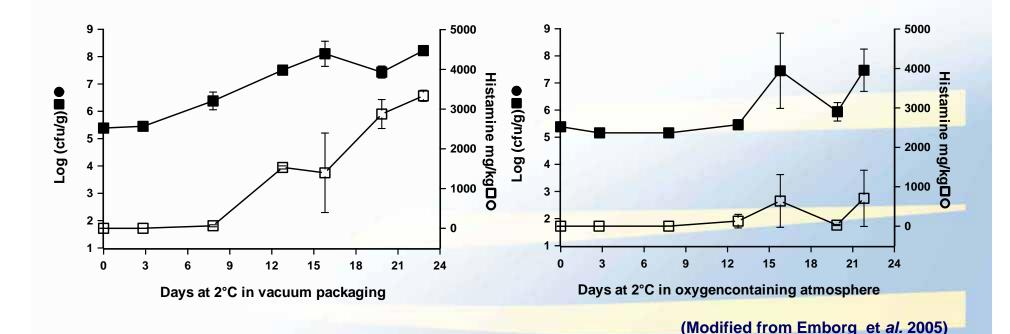
Cases	Products	Histamine (mg/kg)	Histamine produced by
2	Tuna, cold-smoked	4500	Photobacterium*
12	Tuna, cold-smoked	2000	Morganella-like*
2	Tuna sandwich	-	?
4	Escolar, fried	4100	?
9	Escolar		?
4	Tuna	3500	Morganella morganii
2	Tuna		?
10	Tuna, cold-smoked	1000	?
4	Sword fish	1500	?
7	Escolar	5000	?
2	Tuna	1700	?
5	Escolar, smoked	2300	?

(* Emborg and Dalgaard 2006)


Until now histamine produced by Enterobacteriacea in temperature abused seafood was generally considered the major reason for HFP

	Histamine production	
	< 10°C	> 10°C
Enterobacteriaceae (Morganella)	-/+	++++
Psychrotolerant bacteria incl. Photobacterium	++	++
Lactic acid bacteria	+/-	++

 Psychrotolerant bacteria growing at 0-5°C has been stated to be less important (Lehane and Olley 2000)


Histamine production by psychrotolerant bacteria

- Maximum concentrations found within 3 packages
- Inoculated cold smoked tuna
- Sensory shelf life = 30 days

Histamine production of psychrotolerant bacteria (2)

- Fresh tuna stored at 2°C
- Oxygen seems to delay the growth of psychrotolerant Morganella

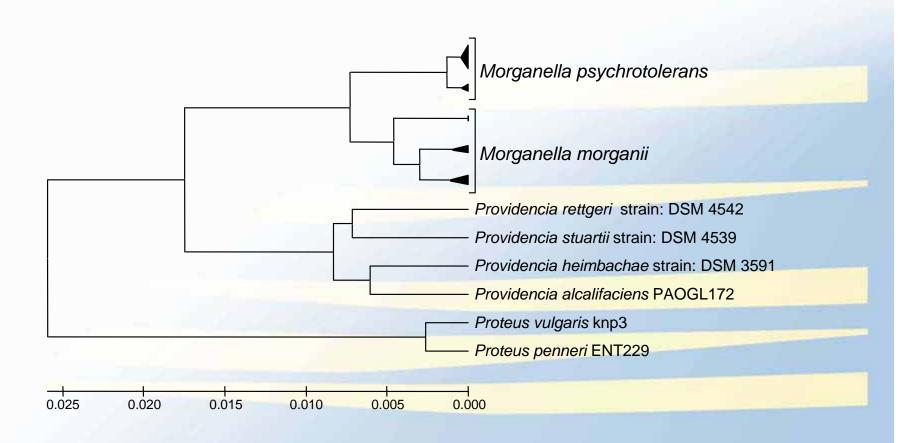
Morganella

Enterobacteriaceae

Until now only one species –
 Morganella morganii

Growth at 4 - 45°C

Histamine production above 7 - 10°C

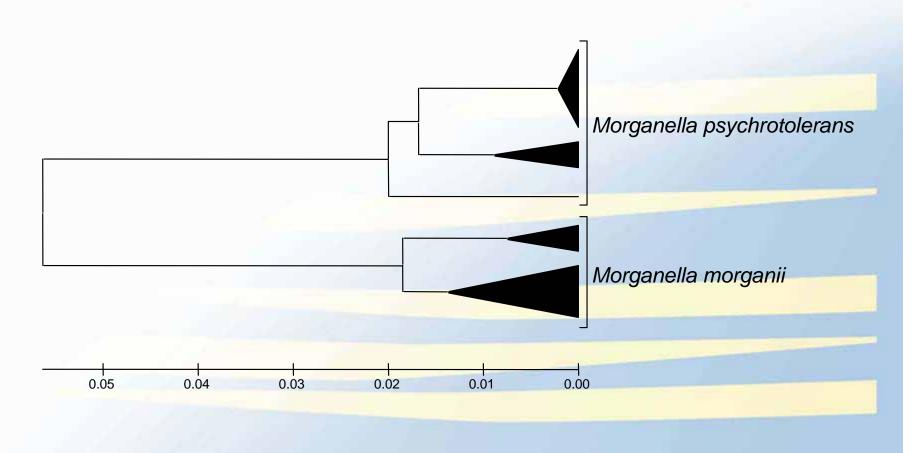

Biochemical identification of Morganella

- Gram-negative motile rods
- Glucose and a few other sugars are fermented
- Phenylalanine-deaminase positive
- Citrate negative
- Variable in lysin and ornithin decarboxylase, trehalose fermentation

Biochemical differentiation of Morganella species

Characteristic	Morganella psychrotolerans	Morganella morganii
Growth at:		
2°C	+	
37°C		+
Growth in:		
8.5% NaCl		+
Fermentation of:		
Trehalose (48h)	(-)	Subspecies variable
Galactose (48h)		+

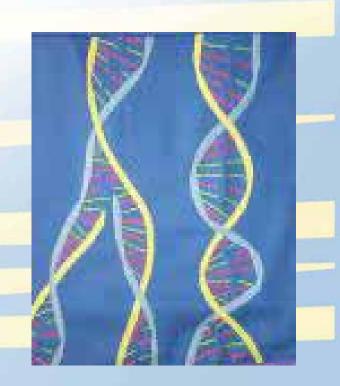
Identification of *Morganella* by 16S rDNA sequencing



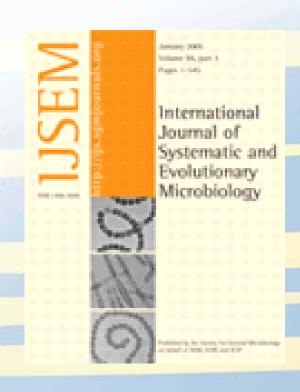
Multilocus Sequencing

- 24 isolates of Morganella
- 7 genefragments from protein encoding housekeeping genes were sequenced by the Sanger method
- Aligned and analysed by Kimura's 2 parameter distances, the methods of parsimony maximum and neighbour-joining.
- Reliability assessed by the bootstrap method

Multilocus sequencing of Morganella



DNA-DNA hybridisation


 Treshold value for species seperation = 70%

 M. psychrotolerans have 18 - 41% DNA similarity to M. morganella

International Journal of Systematic and Evolutionary Microbiology

- Taxonomy
- Nomenclature
- Identification
- Characterization
- Culture preservation

Conclusions and perspectives

- New psychrotolerant and histamine producing species of Morganella with significant impact on food safety
- Reduce/minimize the frequency of HFP
 - Temperature
 - Salting
 - Packaging
- Prediction of
 - Histamine formation and concentration
 - Exposure assessment
- Detection
 - Polymerase chain reaction

SEAFOOD

Thanks to....

- Department of Seafood Research at DIFRES
 - Paw Dalgaard, Nadereh Samieian, Tina Dahl Dewitt
- Danish Institute for Food and Veterinary Research
 - Peter Ahrens, Kirsten Vestergaard
- Danish Veterinary and Food Administration (DVFA)
 - Ib Krog Larsen, Niels D. Sørensen
- Strain providers
 - Graham Fletcher (Crop & Food Research, New Zealand)
 - George Wauters (Katholieke Universiteit Leuven, Belgium)
 - Bon Kimura (Tokyo University of Marine Sciences and Technology, Japan)

And to you for your attention

A better life with seafood...

www.seafoodplus.org