

Listeria monocytogenes: Predicting the growth boundary in seafood – a key to comply with new EU regulation

Paw Dalgaard and Ole Mejlholm Danish Institute for Fisheries Research (DIFRES) Department of Seafood Research (FF) Microbiology & Hygiene pad@difres.dk, ome@difres.dk

Listeria monocytogenes

- Background and objectives
 - New EU-regulation (EC 2073/2005)
 - Predicting growth in cold-smoked salmon
- Preventing growth in lightly preserved seafood
- Predicting the growth boundary
- A key to comply with new EU regulation
- Conclusions and perspectives

New EU regulation (EC 2073/2005)

EU-regulation distinguish between ready-to-eat foods able or unable to support growth of *Listeria monocytogenes*

Ready-to-eat foods	Critical limit	Comment
Support growth	None in 25 g	- When produced
Support growth	100 cfu/g	 It must be <u>documented</u> that 100 cfu/g is not exceeded within the storage period
Unable to support growth	100 cfu/g	- Documentation - pH \leq 4,4 or $a_w \leq$ 0,92 - pH \leq 5,0 and $a_w \leq$ 0,94 - Shelf-life below 5 days

4

Predicting growth in cold-smoked salmon

Product characteristics:

- NaCl in the water phase 3 8 %
- pH 5.9 6.3
- Lactate in the water phase 4 15 g/liter
- Smoke components: 3 20 mg phenol/kg
- Microflora dominated by lactic acid bacteria (LAB)

Storage and distribution conditions:

- Vacuum-packed at about 5°C
- Modified atmosphere-packed at about 5°C

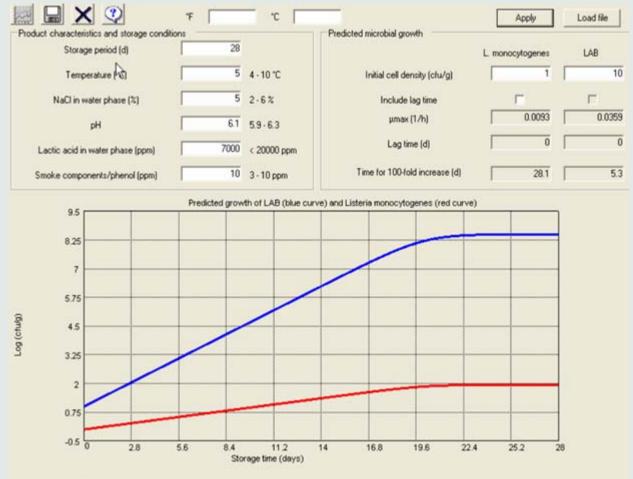
Variable product \rightarrow Variable growth of *L. monocytogenes*

Predicting growth in cold-smoked salmon

Acceptable model includes the effects of temperatur, NaCl/ a_w , pH, lactate, smoke components (phenol) and lactic acid bacteria (LAB)

Observed and predicted growth of *Listeria monocytogenes* in 13 batches of naturally contaminated products at 5 °C

		Predicted growth		
	Observed growth	With LAB	Without LAB	
Avg., log cfu g ⁻¹	0.7	1.2	2.7	
Avg., cfu g ⁻¹	1 → 5 cfu/g	1 → 16 cfu/g	1 → 500 cfu/g	


Predicting growth in cold-smoked salmon

SSSP software documents shelf-life depending on:

- Product characteristics
- Storage conditions

Seafood Spoilage and Safety Predictor (SSSP) is available free of charge at www.difres.dk/micro/sssp/

Lactic acid bacteria Listeria monocytogenes

FF, Lyngby

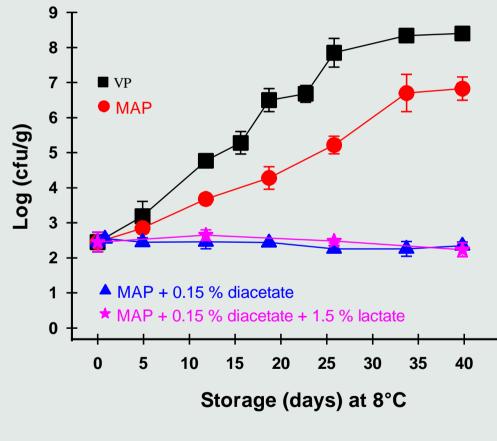
Giménez & Dalgaard (2004)

1

New EU regulation (EC 2073/2005)

EU-regulation distinguish between ready-to-eat foods able or unable to support growth of *Listeria monocytogenes*

Ready-to-eat foods	Critical limit	Comment		
Support growth	None in 25 g	- When produced		
Support growth	100 cfu/g	 When <u>documented</u> that 100 cfu/g is not exceeded within the storage period 		
Unable to support growth	100 cfu/g	- Documentation - pH \leq 4,4 or $a_w \leq$ 0,92 - pH \leq 5,0 and $a_w \leq$ 0,94 - Shelf-life below 5 days		


Objectives

- To prevent growth of *Listeria monocytogenes* in lightly preserved seafood
- To predict the growth boundary of *Listeria* monocytogenes depending on product characteristics and storage conditions

Preventing growth in lightly preserved seafood

45

Product characteristics and storage conditions determine if growth of *L. monocytogenes* can be prevented by addition of (di)acetate or if both (di)acetate and lactate are required

Important to prevent growth in various lightly preserved seafoods

<u>6</u>

Predicting the growth boundary

- Existing growth model (Giménez and Dalgaard, 2004)
- Expand model with terms for effect of CO_2 and (di)acetate
- Add term for effect of interactions (Le Marc et al. 2002)
- Calibrate model to data for growth in well characterized lightly preserved seafoods (n = 39)

Predict growth/no growth and the growth boundary

<u>ക്</u>

Predicting the growth boundary

$$\mu_{\max} = b$$

$$: ((T - T_{\min}) / (T_{ref} - T_{\min}))^{2}$$

$$: (a_{w} - a_{w \min}) / (a_{w opt} - a_{w \min})$$

$$: 1 - 10^{(pH_{\min} - pH)}$$

$$: 1 - \sqrt{\frac{[LAC_{U}]}{[MIC_{U LAC}]}}$$

$$: ((NIT_{\max} - NIT) / NIT_{\max})^{2}$$

$$: (P_{\max} - P) / (P_{\max} - P_{opt})$$

$$: (CO_{2 \max} - CO_{2 \text{ dissolved}}) / (CO_{2 \max} - CO_{2 \text{ opt}})$$

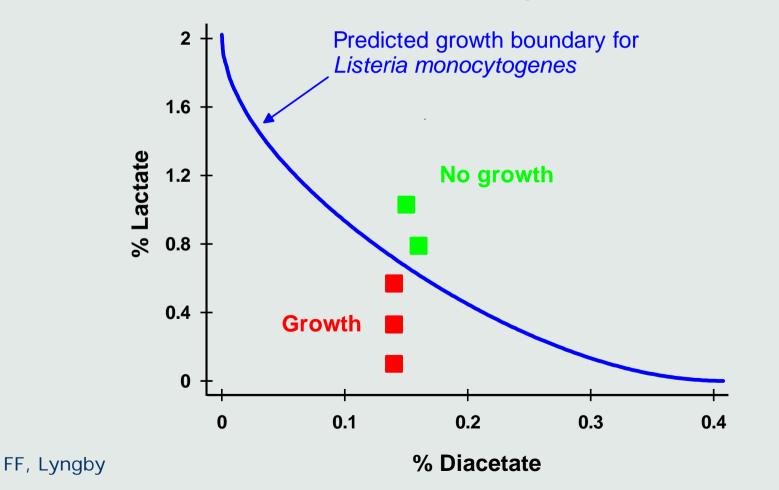
$$: 1 - \sqrt{\frac{[AC_{U}]}{[MIC_{U AC}]}}$$

$$: \xi$$

Growth boundary model including the effect of temperature, NaCl/ a_w , pH, lactate, nitrite, phenol (smoke), CO₂, diacetate and interactions between the parameters (ξ)

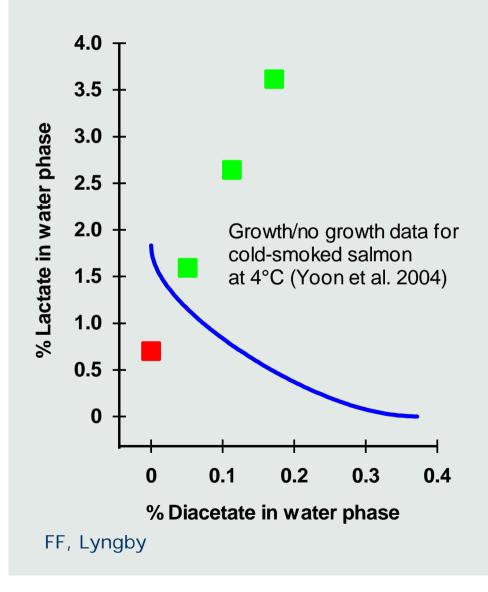
Each term results in a value between 0 and 1

 $\xi(\varphi(T, a_w, pH, [LAC], NIT, P, CO_2, [AC])) = \begin{cases} 1 & ,\psi \le 0.5 \\ 2(1-\psi) & ,0.5 < \psi < 1 \\ 0 & ,\psi \ge 1 \end{cases}$


 $\frac{\varphi_{e_i}}{2\Pi(1-\varphi_i)}$

FF, Lyngby

- Interaction term (Le Marc et al. 2002)

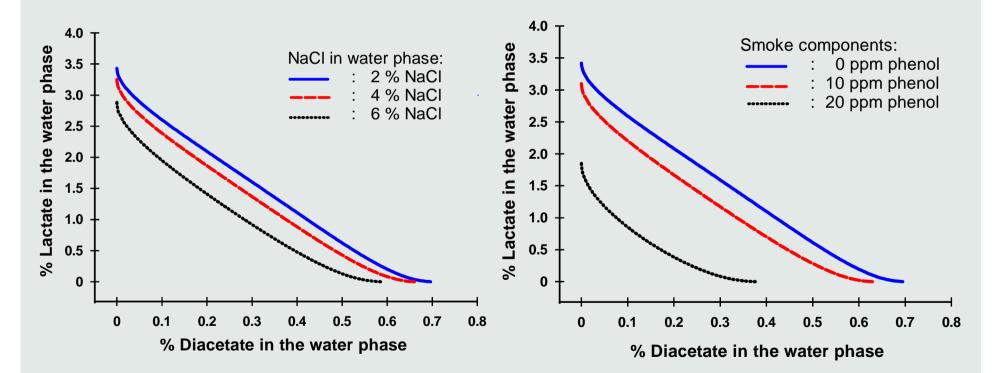

Predicting the growth boundary

Interactions are essential when predicting the effect of product characteristics and storage conditions

(1

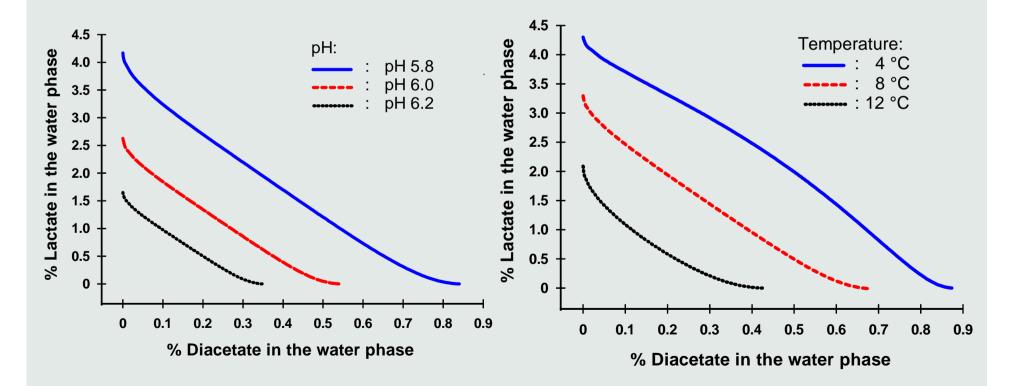
Predicting the growth boundary

Correct prediction of growth/ no growth in 70 of 73 experiments (96%)


Both inoculated and naturally contaminated lighlty preserved seafoods have been evaluated

This study, n = 26Literature, n = 47

The new model perform markedly better than existing growth boundary models (Augustin et al. 2005) (less than 70 %)

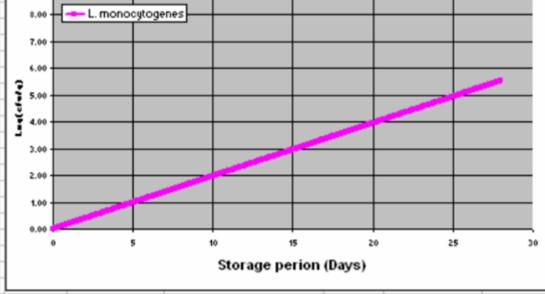

Predicting the growth boundary

Smoke components are important to control growth of *Listeria monocytogenes* in lightly preserved seafood

Predicting the growth boundary

Both pH and temperature (as expected) are important to control growth of *Listeria monocytogenes* in lightly preserved seafood

FF, Lyngby

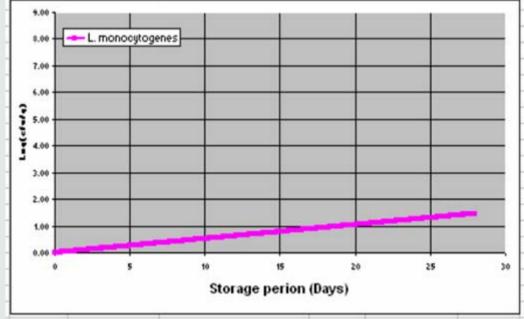


A key to comply with new EU regulation

Lightly salted seafood:

- Support growth of
 L. monocytogenes (more than 5 log cfu/g)
- Product only comply with new EU regulation if shelf-life is very short

Listeria monocytogenes, cfulg	1	>0	
Storage periode	28	>1	
Temperature, C	5.00	2 - 15 °C	
NaCl in water phase, %	3.50	0 - 8%	
рН	6.00	5.9 - 7.7	
Lactate in water phase, mg/l	7000	0 - 20000	
Smoke components (phenol, mg/kg)	0.0	0-20	
% CO2 in equilibrium	0.0	0 - 100 %	
Diacetate in water phase, mg/l	0	0 - 2000	
Nitrite, mg/kg	0	0 - 200	

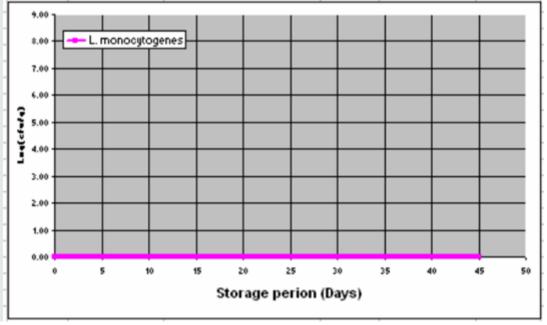


A key to comply with new EU regulation

Lightly salted product:

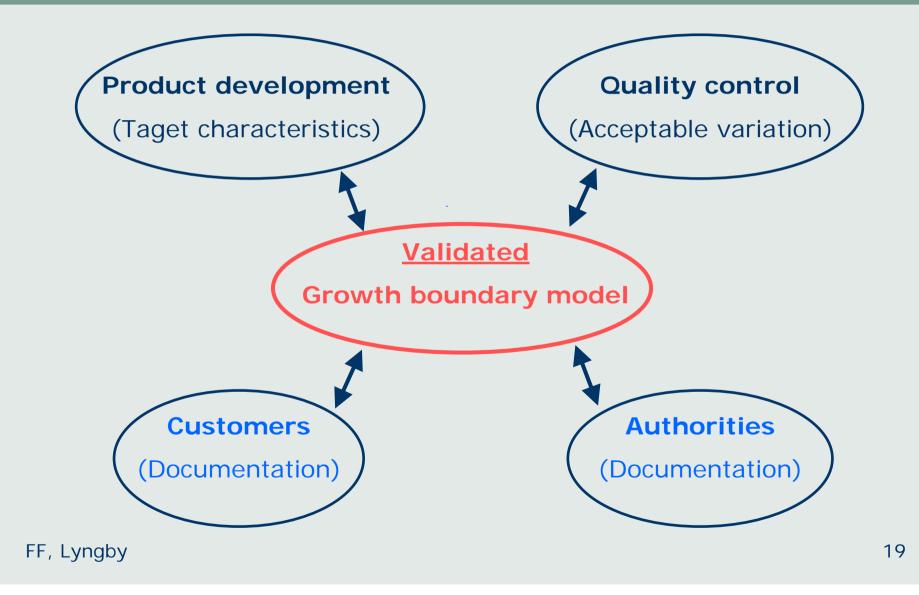
- Diacetate reduce but do not prevent growth of *L. monocytogenes* in this product (~ 1.5 log cfu/g in 28 days)
- Product with 3-4 weeks
 shelf-life comply with new EU regulation

	Product characteristics and storage con	ditions	Range	
	Listeria monocytogenes, cfulg	1	>0	
	Storage periode	28	>1	
	Temperature, 'C	5.00	2 - 15 °C	
	NaCl in water phase, %	3.50	0-8%	
	pH	6.00	5.9 - 7.7	
	Lactate in water phase, mg/l	7000	0 - 20000	
	Smoke components (phenol, mg/kg)	0.0	0 - 20	
	% CO2 in equilibrium	0.0	0 - 100 %	
	Diacetate in water phase, mg/l	1000	0 - 2000	
	Nitrite, mg/kg	0	0 - 200	
_				_



A key to comply with new EU regulation

Lightly salted product:


- Diacetate and smoke prevent growth of *L. monocytogenes* in this product
- Product comply with new EU regulation even with a shelf-life of more than 4 weeks

Product characteristics and storage cor	ditions	Range	
Listeria monocytogenes, cfulg	1	>0	
Storage periode	45	>1	
Temperature, 'C NaCl in water phase, %		2 - 15 °C	
NaCl in water phase, %	3.50	0 - 8%	
pH	6.00	5.9 - 7.7	
Lactate in water phase, mg/l	7000	0 - 20000	
Smoke components (phenol, mg/kg)	10.0	0 - 20	
% CO2 in equilibrium	0.0	0 - 100 %	
Diacetate in water phase, mg/l	1500	0 - 2000	
Nitrite, mg/kg	0	0 - 200	

A key to comply with new EU regulation

A key to comply with new EU regulation

- Many different combinations of product characteristics and storage conditions can prevent growth of *L. monocytogenes*
- The new model facilitate identification of appropriate combinations for different products

Storage co	onditions	Product characteristics					
Temp. (°C)	CO ₂ (%)	NaCI (% WPS)	рН	Phenol (ppm)	Nitrit (ppm)	Laktat (%)	Diacetat (%)
5.0	0	4.5	6.0	10.0	0	0.80	0.11
5.0	25	4.5	6.0	10.0	Ο	0.80	0.09
5.0	25	3.0	6.0	10.0	Ο	0.80	0.12
5.0	25	4.5	6.0	19.5	Ο	0.80	0
8.0	98	4.5	6.0	13.0	Ο	0.70	0
8.0	25	4.5	6.0	13.0	100	0.70	0.11

Conclusions and perspectives

- Diacetate (E 262) in combination with other product characteristics can prevent growth of *L. monocytogenes* in lightly preserved seafood
- The developed growth boundary model rapidly determines conditions that prevent growth of *L. monocytogenes* (A key to comply with new EU regulation)
- To improve its usefulness the growth boundary model will be included in application software
- The modelling approach seems useful for other antimicrobial agents and deserves further development

Thanks

- Colleagues working at DIFRES
 - B.J. Cowan, N. Samieian, C.V. Christensen, B. Giménez
- Industry collaboration
 - Royal Greenland Seafood A/S
- Economic support
 - DIFRES; Directorate for Food, Fisheries and Agri Business
- SEAFOODplus
 - For invitation to present this work

<u>a</u>

References

Augustin, J.-C., Zuliani, V., Cornu, M. and Guillier, L. (2005) Growth rate and growth probability of *Listeria monocytogenes* in dairy, meat and seafood products in suboptimal conditions. *Journal of Applied. Microbiology* **99**, 1019-1042.

Espe, M., Kiessling, A., Lunestad, B.-T., Torrissen, O.J. and Rørå, A.M.B. (2004) Quality of cold smoked salmon collected in one French hypermarket during a period of 1 year. *Lebensmittel-Wissenschaft und -Technologie* **37**, 627-638.

Giménez,B. and Dalgaard,P. (2004) Modelling and predicting the simultaneous growth of *Listeria monocytogenes* and spoilage microorganisms in cold-smoked salmon. *Journal of Applied Microbiology* **96**, 96-109.

Jørgensen,L.V., Dalgaard,P. and Huss,H.H. (2000) Multiple compound quality index for cold-smoked salmon (*Salmo salar*) developed by multivariate regression of biogenic amines and pH. *Journal of Agricultural and Food Chemistry* **48**, 2448-2453.

LeMarc, Y et al. (2002) Modelling the growth kinetics of *Listeria* as a function of temperature, pH and organic acid concentration. *International Journal of Food Microbiology* **73**, 219-237.

Leroi, F., Joffraud, J.J., Chevalier, F. and Cardinal, M. (2001) Research of quality indices for cold-smoked salmon using a stepwise multiple regression of microbiological counts and physico-chemical parameters. *Journal of Applied Microbiology* **90**, 578-587.

Ross, T. and Dalgaard, P. (2004) Secondary models. In *Modeling Microbial Responses in Foods* ed. McKeller, R.C. and Lu, X. pp. 63-150. Boca Raton, USA: CRC Press.

Yoon,K.S., Burnette,C.N., Abou-Zeid,K.A. and Whiting,R.C. (2004) Control of growth and survival of *Listeria monocytogenes* on smoked salmon by combined potasium lactate and sodium diacetate and freezing stress during refrigeration and frozen storage. *Journal of Food Protection* **67**, 2465-2471.

FF, Lyngby