

Promising hurdle technologies to minimise the survival and growth of pathogens and spoilage bacteria in seafood during processing

Dr Françoise LEROI Ifremer, Nantes, France

Introduction

- Preservative factor = hurdle
- Most important hurdles in food temperature, water activity, pH, redox potential, preservatives (nitrite, sorbate, sulphite)
- More than 60 hurdles described, including novel decontamination technology

 Hurdle technology = combination of hurdles (Leisner, 1985)

HURDLETECH

Hurdle technology, including minimal processing, to ensure quality and safety of convenience seafood

Project leader: Dr Françoise Leroi (Ifremer)

Partners

France

France

Norway

Spain

Island

Netherlands

- LPFPs: lightly preserved fish products (salt <6% WP, pH >5): cold-smoked fish, carpaccio, middly cooked shrimp ...
 - Listeria monocytogenes
 - spoiling micro-organisms

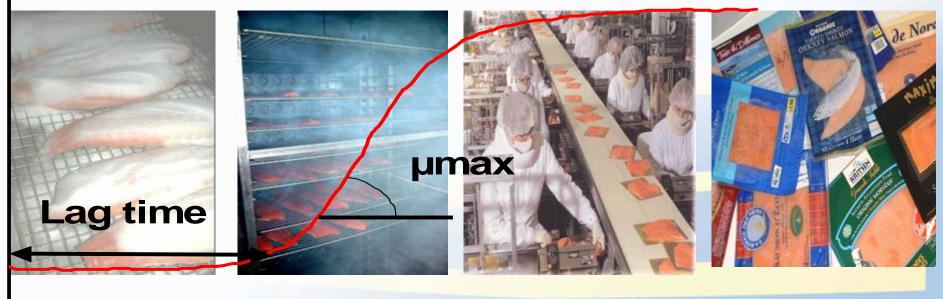
- PSFPs: preserved semi finished products: salted cured-desalted cod, klipfish, frozen-thawed cod ...
 - Listeria monocytogenes,
 Staphylococcus aureus
 - spoiling micro-organisms

Selected hurdles

- 1. Technological hurdles (salt, freezing, smoke ...)
- 2. Competitive micro-organisms (biopreservation)
- 3. Chitosan and bioactive packaging
- 4. Pulsed light

Common collection of target micro-organisms isolated from fish products

- Pathogenic or surrogates micro-organisms
 - Listeria monocytogenes and innocua,
 Staphylococcus aureus and xylosus, Bacillus subtilis, Clostridium sporogenes
- Spoiling micro-organisms
 - Photobacterium phosphoreum, Shewanella putrefaciens, Pseudomonas spp., Serratia liquefaciens, Psychrobacter spp., Lactobacillus sakei, Brochothrix thermosphacta



Technological hurdles

Technological hurdles in coldsmoked salmon

Xmax

SEAFOOD

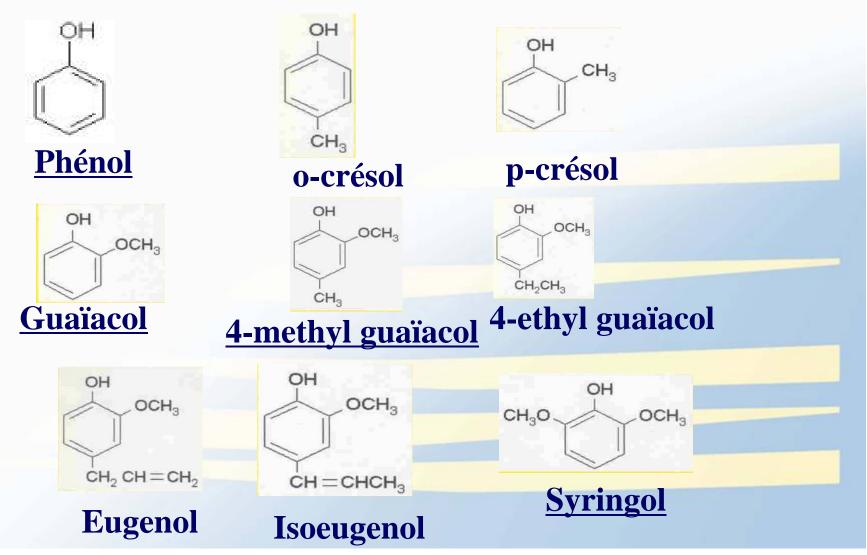
Salt

smoke

vacuum packaging

storage

T°C



Smoke

• Smoke = mixture of volatile compounds

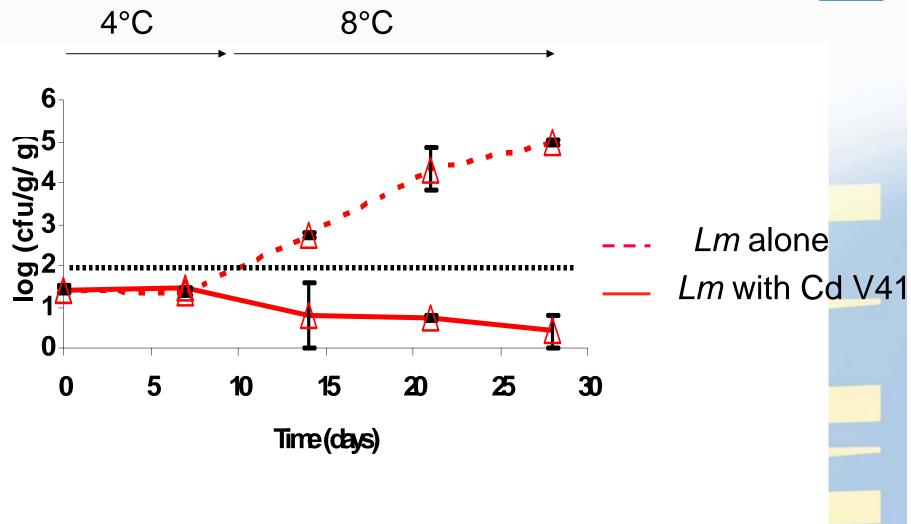
Antimicrobial properties of <u>phenolic</u> <u>compounds</u>

Main results

- Different sensitivity within Lm strains to phenolic compounds (factor 10)
- Anti-listeria effect varies from one compound to another (MIC: 322 to 8600 ppm)
- At high concentrations, synergy between the phenolic compounds (MIC = 1500 ppm)
- In CSS, 20 ppm
 - Other inhibitory compounds
 - Interaction with pH, aw ...

Competitive micro-organisms

Biopreservation


- Biopreservation is the extension of storage life and enhancing of safety of food using the natural or controlled microflora and/or their antimicrobial products (Stiles, 1996)
- Lactic acid bacteria (LAB) are good candidates

Previous results

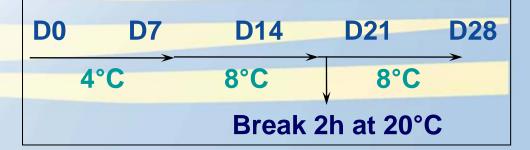
- Carnobacterium divergens V41 isolated from salmon
- Active against a wide collection of Listeria monocytogenes
- Activity confirmed in cold-smoked salmon during 28 days of storage

Can we use *C. divergens* V41 as a protective strain?

- Do not spoil the product
- Do not produce toxic compounds
- Easy to produce

4 batches coming from 4 industries

Slices of cold smoked salmon (40-50 g)



Inoculation by spraying *C. divergens* V41 (10⁵ UFC/g)

Storage conditions

Vacuum-package ---

- No or low production of TVBN
- No acidification
- No sensory modification (odour, taste, texture, aspect)
- No production of histamine
- C. divergens easy to produce fermentor
- High inibition of Listeria monocytogenes

Carnobacterium divergens V41 good candidate for an application in CSS

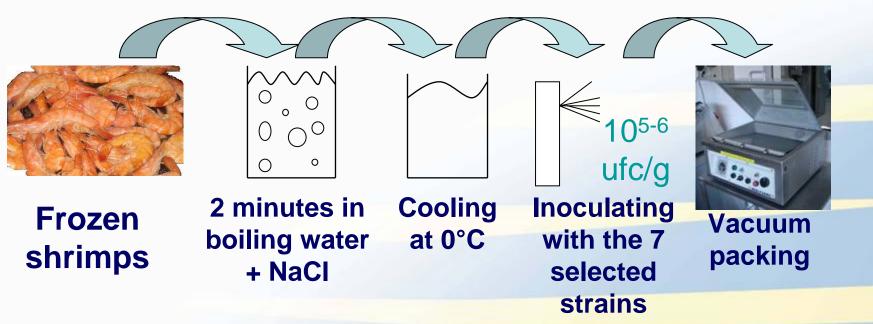
New protective cultures

Active against other pathogenic bacteria and/or spoiling micro-organisms

51 seafood products

stored at 8°C

- presence of LAB strains
- active at least against one out of four target strains



- 52 strains were selected
- Inhibition spectrum enlarged against 14 target strains
- Clustered in 7 groups with hierarchical classification methods
- Selection of 7 representative strains

Technological application

Storage at chilled temperature: 8°C for 28 d

Microbial analysis

- Good implantation of the PC
- No inhibitory effect on mesophilic total flora and enterobacteriaceae

Sensory analysis (7 trained panellists)

Quality Indice based on off-odours perception

Promising strains

Strain	Analysis of 16S rDNA sequence
S 1	Leuconostoc gelidum/inhae
S2	Lactococcus piscium
S 3	Lactococcus piscium
S4	Leuconostoc gelidum/inhae
S5	Lactobacillus fuchuensis/plantarum
S 6	Carnobacterium alterfunditum
S7	Leuconostoc gelidum/inhae

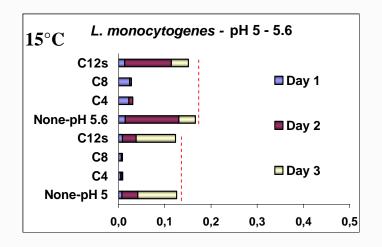
We still need to explain ...

- Why PC strains increase sensory quality?
- How it works
- Does it work on pathogenic bacteria?
- Does it work on other fish products?

Chitosan

 Chitosan is the principal derivative of chitin and is produced by its alkaline deacetylation

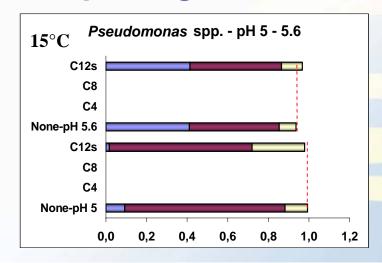
- Chitosan has been proved to be nontoxic, biodegradable, biocompatible and it has been used in the food industry as safe and natural fat digestion and trapped lipid compound
- The antibacterial and antifungal activity of chitosan has been reported widely in the scientific literature (Roller, 2003)


A novel food preservative material for minimal processed food?

- 11 chitosan formulations
 - commercial chitosan with different degree of deacetylation and molecular weight
 - Different solvents
 - Different concentrations
- Tested against 14 target bacteria
- Selection of 2 chitosan formulations

SEAFOOD

all pathogenic bacteria are inhibited



L. monocytogenes, innocua S. aureus Bacillus subtilis

Different temperature and pH

all spoiling bacteria are inhibited

P. phosphoreum
S. putrefaciens
Pseudomonas
Psychrobacter
S. liquefaciens
L. sakei
B. thermosphacta

Effect on Listeria

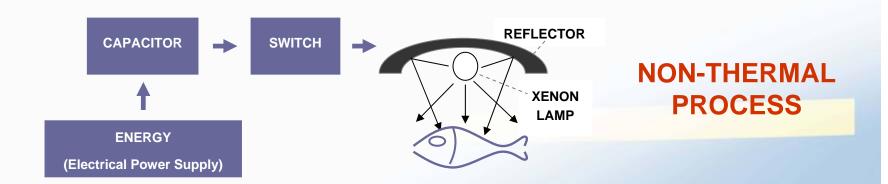
- Lethal effect of chitosan
- Recovery depends on chitosan concentration
 - 0.2% inhibit growth for 28 days
- Chitosan <u>do not</u> inhibit growth of *C. divergens* V41


Work in progress

- Validation in vivo (LPFPs) of the most effective formulations
- Modification of the chitosan formulations to improve their film forming properties
- In vitro validation of the modified formulations

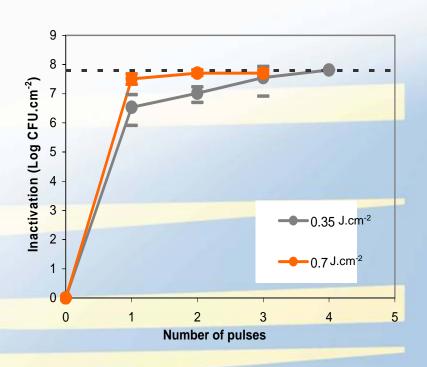
Future work

 Production of commercial plastic/chitosan film with antimicrobial properties.


- To find an optimal film formation methodology.
- Analysis of the stability, antimicrobial activity and physical properties of the modified chitosan films.
- Adhesion chitosan-commercial plastic films.

Pulsed light

Pulsed light technology


- Broadband light emission ($\lambda = 200-1000$ nm) Ultraviolet region: 40% of total light
- Pulse duration: 325 μs (125 μs to reach the pulse peak). 27 s between consecutive pulses
- Approved by the US FDA (21CFR179.41) for applications in the production, processing and handling of food products (12 J.cm⁻²)

Results

Very efficient process inactivating microorganisms

- Significant inactivation (>7 Log CFU) of spoilage and pathogen strains isolated from LPFPs
- High efficacy at low doses (0.7 J.cm⁻²)
- Short treatment time (< 1s)
- Minimal heating (<3°C): Nonthermal process

Critical factors of pulsed light process

- Pulse energy
- Distance from the lamp
- Number of pulses

LIGHT DOSE

Critical factors of product

L. innocua inactivation does not depend on

Growth temperature
Process temperature
NaCl concentration (up
to 5%)

 L. innocua inactivation slightly depends on

Physiological state

Cell concentration

 L. innocua inactivation strongly depends on

Storage temperature

Pulsed light sensibility

- L. innocua is one of the most resistant strain among tested spoilage (7) and pathogen microorganisms (6)
- L. innocua could be considered as a surrogate for L. monocytogenes and as a reference microorganism for Pulsed Light Treatment optimization in LPFPs

IMPACT OF PL TECHNOLOGY on LPFPs

- L. innocua inactivation is less important in vivo than in vitro
- L. innocua inactivation increases with light dose
- L. innocua inactivation does not depend on initial cell concentration
 - → PL technology could be used as a novel process to improve safety and increase shelf life of LPFPs

Research continues ...

 Suitability of this process to increase the shelf life of LPFPs

 Impact of PL technology on physicochemical and sensorial characteristics of LPFPs

Conclusion

- Wide range of promising hurdle for decontamination and inhibition of growth in fish products
- Some of them still need validation in real products
- Some of them are at the « demonstration » stage (PL, biopreservation)

Conclusion

- Combination those hurdles
 - Pulse light and biopreservation
 - Pulsed light and bioactive packaging
 - Biopreservation and bioactive packaging
 - Compatibility/synergy with technological hurdles

Acknowledgment

- FISKERIFORSKNING: T. Skjerdal, G. Lorenzen
- <u>AZTI</u>: A. Lasagabaster, I. Martínez de Marañón, Z.
 Cruz, I. Olabarrieta, J.C. Arboleya, M. Nuin, F. Amarita
- IFL: H.L. Lauzon
- ENITIAA : M.F. Pilet, H. Prevost, S. Matamoros, X. Dousset
- RIVO: C. Aalbert
- IFREMER: F. Gigout, C. Donnay-Moreno, M. Cardinal, J. Cornet, J.J. Joffraud

EU Commission (FOOD-CT- 2004-506359)

A better life with seafood...

www.seafoodplus.org