

The growth and survival of Listeria in ready-to-use salt cured cod

Ingebrigt Bjørkevoll¹, Taran Skjerdal², Grete Lorentzen¹, Reidun Dahl¹ and Ragnar L. Olsen^{3,1}

¹ Fiskeriforskning, (Norwegian Institute of Fisheries and Aquaculture Research), Tromsø

² Det norske Veritas, Research, Oslo

³ Norwegian College of Fishery Science, University of Tromsø

Introduction

• Previously shown: *Listeria* spp. can survive during the salt-curing process of cod (Lorentzen et al 2005).

So what:

 Is it likely that this can entail a health threat for consumers?

Salt-cured cod products

Salt-cured cod must be rehydrated to reduce the salt content from 20 % to 2-4 % before consumption

Main objectives

- Study the growth and survival of Listeria spp during processing of ready-to-use salt-cured cod:
 - At different inoculation levels
 - At chilled and abuse storage temperature
 - Inoculated prior to salt-curing compared to inoculation during the desalting step

Listeria

- Any fresh food product of animal or plant origin may harbor varying numbers of Listeria (monocytogenes)
- Numbers often very low, below 10 cfu/g
- Infective dose suggested to be as low as 10² cfu for immunocompromised hosts, but in the range 10⁴-10⁷ for healthy hosts
- The human health risk is related to level of Listeria

Materials and methods

Fresh cod used as raw material

Sample size of approximately 2x2x3 cm with skin

 Listeria innocua used as indicator for Listeria monocytogenes

Microbiological methods

 Total viable count was determined using Plate Count Agar added 3 % NaCl

 Palcam Listeria agar base as selective medium for Listeria spp. (ISO 11290-01)

Sensory evaluation

- At each sampling point during storage of the desalted cod, a sensory evaluation was carried out:
 - Appearance
 - Smell
 - Texture

Product shelf life

 The shelf life of the desalted cod products were determined based on two criteria:

 When the product reached the total allowable level of bacteria (5x10⁶ cfu/g) (Norwegian Food Safety Authority)

 Detection of decreased sensory quality of the product (mainly product smell)

Experiment overview

Uninoculated fresh cod treated accordingly (as control)

Experiment 1

Inoculation of fresh fish:

Study the survival and growth of *Listeria* in desalted cod stored at high (8 °C) and low (4 °C) temperatures.

Listeria inoculated in the range log 1-log 6 prior to salt-curing.

Survival of *L.innocua* for levels ranging from log 1 – log 6

Results-Survival

 Listeria survives the salt-curing process when inoculated in both high and low numbers

 During salt-curing, the level of Listeria decreases less than log 1 for all inoculation levels tested

Growth of salt-stressed L. innocua in rehydrated salt-cured cod during storage

Results- Growth (i)

 Listeria that is introduced prior to saltcuring, grows well in the desalted product.

 Also when present in very low numbers, the level of *Listeria* can reach high levels (log 5) when stored at 8 C

Results- Growth (ii)

- Low levels of Listeria (log 1)
- After desalting, growth is detected at 8
 °C but not 4 °C for up to 10 days of storage
- Moderate levels of Listeria (log 2)
- After desalting, growth is registered at both low and high temperatures

Main experiment 2

• Inoculation during rehydration:

Compare the survival and growth of Listeria at different inoculation points in the processing of desalted cod

Listeria inoculated in low levels (log 1) prior to salt-curing or in the desalting process.

Experiment overview

Uninoculated fresh cod treated accordingly (as control)

Inoculation prior to salt-curing (-■-)or during desalting (-▲-)

Results-Inoculation point

- Listeria has a significantly shorter lag phase when contamination takes place during desalting
- When inoculated during desalting, high levels of Listeria are found also when stored at 4 °C

Results- Shelf life of desalted cod samples, contamination level of *L. Innocua* log 1

	Contaminated prior	Contaminated
	to salt-curing	during desalting
Lag phase at 4 °C	10 days	2 days
Shelf life at 4 °C	7 days	7 days
Lag phase at 8 °C	4 days	2 days
Shelf life at 8 °C	4 days	5 days

Red numbers: L. innocua higher than 100 cfu/g fish

Conclusion

The lag period of Listeria in desalted cod:

- is dependent on the contamination history and the storage temperature
- is considerably shorter when Listeria is introduced to the fish during desalting compared to the raw material prior to saltcuring

Conclusion

- Listeria survives the salt-curing process also when in low numbers (log 1), but did not reach infective doses within the shelf life of the product in this trial.
- However, when Listeria was inoculated during desalting, infective doses of Listeria was reached within the shelf life of the ready-to-use desalted cod product

A better life with seafood...

www.seafoodplus.org