Rapid methods for detection of *Vibrio* spp. in European seafood

www.seafoodplus.org

SEAFOOD

Introduction

- Vibrios are a significant cause of seafoodassociated illness worldwide
- Three main species of interest are V. cholerae, V. parahaemolyticus and V. vulnificus
- A number of other species may also cause seafood-associated infection

Vibrios and the environment

- Widespread in coastal and estuarine environments
- Absolute requirement for sodium
- Location of individual species reflects salinity (and temperature)range
- Pathogenic species usually multiply in the environment when temperature in the range 15-30°C
- No association between faecal pollution indicators and occurrence of pathogenic vibrios

Occurrence in human clinical specimens

		Intestinal	Non- intestinal
V. cholerae C) 1	++++	+
<i>V. cholerae</i> n	on-O1	++	++
V. parahaem	olyticus	++++	+
V. fluvialis		++	-
V. furnissii		++	-
V. hollisae		++	-
V. mimicus		++	+
V. metschnik	ovii	+	+
V. vulnificus		+	+++
V. alginolytic	us	-	++
V. carchariae)	-	+
V. cincinnatie	ensis	-	+
V. damsela		- /	+

Foodborne vibrio infections

- Primarily associated with consumption of raw shellfish
- May also be associated with consumption of undercooked or recontaminated shellfish
- A proportion of cases also associated with consumption of crustacea (shrimps, crab, crayfish) or finfish

V. cholerae O1 (and O139)

- Cause of epidemic and pandemic cholera
- Cholera toxin the principle cause of the symptoms

2004 first half report: 133000 cases; 1270 deaths

V. parahaemolyticus

- Causes gastro-enteritis
- Widely present in coastal and estuarine environments
- Ability to produce illness mainly associated with ability to produce certain haemolysins (Thermostable Direct Haemolysin (TDH) & TDH-Related Haemolysin(TRH))
 - e.g. in the US, only 0.2-3.2% of environmental isolates are TDH +ve

V. vulnificus

- Causes primary septicaemia or wound infections
- Infection via GI tract (raw oysters) or wounds
- Death may occur within 2 days of start of symptoms
- Predisposition by certain illnesses

V. vulnificus cellulitis

Vibrio infections in the EU

- Most cases are imported
 - Mainly as a result of people having been infected abroad
- Outbreaks of *V. parahemolyticus* have been reported in Spain (oysters and crabs), France (shellfish) and some other EU countries
- V. vulnificus wound infections and/or septicaemia reported from Belgium, Netherlands and Denmark

Occurrence in harvested shellfish

- Britain
 - 14% positive for V. parahaemolyticus
- Spain
 - 5% V. cholerae non-O1,
 - 30% V. parahaemolyticus, 16% V. fluvialis
- Denmark
 - 41% positive for V. vulnificus at one site
- However, it is important to know the concentrations and pathogenic potential
 - Little information available within Europe

Causes of rejection/detention of seafood imported into the EU

Cause of detention/rejection	No. of rejections / detentions				
	1999	2000	2001	2002	
Microbial	59	53	49	47	
V. parahaemolyticus	13	10	19	14	
V. vulnificus		2	1	3	
V. cholerae	9	8	9	5	
Other vibrios		1			
Enterobacteria	6	2	4	6	
S. aureus	7	0			
Listeria		0			
Salmonella	20	18	10	12	
Hepatitis	1	1			
Total plate count	1	8	4	7	
Molds		1	1		
Clostridium		2	1		

(Ababouch and Gandini, unpublished)

SEAFOOD

Removal from bivalves

- Depuration only about 40-50% of pathogenic vibrios removed at 48 hours
- Pasteurization heat <u>shucked oysters</u> at 50°C for 10 minutes followed by rapid cooling in ice-water for 5 minutes
 - 6 log reduction of V. vulnificus
 - 3-4 log reduction of V. parahaemolyticus
 - Only reduces V. cholerae by approximately 1 log
- Freezing –40C followed by 3 weeks storage results in 4-5 log reduction
- Ultra-High Pressure treatment results in up to 6 log reduction

Influences on risk from V. parahaemolyticus

The relative importance of parameters that influence risk of *V. parahaemolyticus* (Vp) illness in the non-Louisiana Gulf Coast summer harvest

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs

There is a need for development of reliable methods for other microbial hazards too, e.g.

Vibrio parahaemolyticus

Conventional enumeration methods

- Direct plating
 - only has a recovery efficiency of about 50% (and variable with TCBS)
 - Overgrowth by nonpathogenic vibrios
- Most Probable Number (MPN)
 - Resource intensive
 - Subject to prozone effect

Alternative conventional enumeration methods

- Semi-quantitative method
 - Lower resource requirements than MPN
 - Lower accuracy and precision than MPN
- Hydrophobic Grid Membrane Filtration (HGMF) method
 - Appears to perform better than MPN
 - Only evaluated to date for V. parahaemolyticus

Identification methods

- Significant problems of misidentification with commercially available identification galleries
- None appears to be suitable on its own for the identification of Vibrio spp from seafoods

ISO 21872 parts 1 and 2

- Part 1: Detection of Vibrio parahaemolyticus and Vibrio cholerae
- Part 2: Detection of species other than Vibrio parahaemolyticus and Vibrio cholerae

SEABAC PROJECT

- Project components
 - Development of simple molecular methods for detection and enumeration
 - Development of real-time
 PCR procedures
 - Depuration and survival studies
 - Characterisation of strains

- Partners
 - Cefas, UK
 - Ifremer, France
 - ISS, Italy
 - IFL, Iceland
 - IPIMAR, Portugal
 - University of Santiago,Spain

Establishment of strain bank

- Difficult to differentiate between Vibrio spp
- Even culture collection strains poorly characterised
- Need well-defined target and nontarget strains for development and validation work

Simple molecular methods

- Direct plating/hybridisation method
- Suitable for use by routine labs
- Total time is 2.5 to 3 days
- Looking at the following genes:
 - ctx for V. cholerae
 - toxR, tdh and trh for V. parahemolyticus
 - vvh for V. vulnificus

Nucleic Acid Hybridisation: Preparation of Colony Lifts

Lift colonies by transferring onto Whatman filter paper and denature DNA by lysis

Denatured DNA strand

Immobilise denatured strand onto filter by heating in microwave

Nucleic Acid Hybridisation: Hybridisation and Detection

Real-time PCR

- Seen as appropriate for specialised labs in the medium term
- Can be undertaken on 6 hour enrichment broths
- Total analytical time less than 3 hours
- Offers the possibility of direct detection and quantification in food extracts

How Is Exponential Amplification Detected?

...The 5' Fluorogenic Nuclease Assay (TaqMan™)

R = 5' Reporter dye

Q = 3' Quencher dye

Characterisation

- To compare
 - different environmental isolates
 - environmental and clinical isolates

Progress at ISO/CEN

- New work item proposed to ISO/CEN on molecular approaches to detection and enumeration of pathogenic vibrios
 - To cover both direct plating/probe hybridisation and real-time PCR
- Time to develop a Technical Specification would be at least 2 years
 - Fits in with the completion of the SEABAC development work

Summary

- Current methods not appropriate for setting microbiological criteria in the EU
- Molecular methods offer a way forward
 - Direct plating/probe hybridisation for routine labs
 - Real-time PCR for specialist labs
- SEABAC progressing development of standard specific and rapid methods through ISO

Thanks to

Rachel Rangdale Cefas

Luciana Croci
 ISS

Dominique Hervio Heath Ifremer

Sónia Pedro IPIMAR

Sigrun Gudmundsdottir IFL

Jaime Martinez Urtaza UoS

...and other co-workers in SEABAC

A better life with seafood...

www.seafoodplus.org